
This article by Dave Beecher has been accepted for publication in US Tech Magazine. This draft is for internal use only; please do not
distribute.

 1

A Self-programming Processor can Facilitate Production
Innovative use of device re-programming capability can simplify testing and
improve results.

Re-programmable microcontrollers are transforming the nature of embedded applications.
Embedded applications in many industrial, automotive, and medical applications
implement sensors that require calibration during manufacture to store offset,
compensation slope or other configuration data. These systems often have used
potentiometers or Serial EEPROM devices to set up and store this calibration information.

In this article we will describe a new way to leverage the self-programming capability of
microcontrollers to simplify the process of performing calibration during the production
process.

Most popular processors with programmable memory also have the ability to read, write,
and erase their own internal memories. In the past, most programmable devices were
programmed before placement on the circuit board. With this method, the final application
code, and often any test code, would be programmed into the microcontroller even before
the product was assembled.

There are drawbacks to preprogramming all code prior to production. First, test routines
and other disposable code may have to be run at functional test or in some later process,
increasing rework costs when bugs are found. Secondly, the combination of required test
or calibration code plus application code requires larger memory, driving the need for a
larger (more expensive) processor.

With In-System programming (ISP), where the processor is programmed on the PCB, at
manufacturing time, a processor can use the entire code space during the test-phase, and
then after test and calibration are complete, the final application can be programmed in
the target. Also, if any tables, parameters or other software modifications need to be
made based on the test results, these can be downloaded into the final product as well,
using in-system programming (ISP) methods.

Let’s use as an example application low cost circuit that must accurately read
temperature, and accurately check the current flow of a motor that the circuit will
eventually be connected to it. The temperature sensor selected for this product is
inexpensive, and has a challenging non-linear curve that must be adjusted in software.
The current sensor also is very inexpensive, and must rely on calibrating the voltage read
back from the voltage drop of current flowing through a piece of wire. This curve must
also be adjusted in software to reflect approximate real values.

This article by Dave Beecher has been accepted for publication in US Tech Magazine. This draft is for internal use only; please do not
distribute.

 2

The product will be built in high volumes, over 100,000 units per month. The
manufacturing line beat rate allows no greater than 15 seconds at each processing step.
The application code consumes 90 percent of the flash code space in the device, and all
calibration values calculated by off target board application need to be stored in the
processors EEPROM area.

This circuit also has some other features, some of which can aid us in production:

• TTL serial port making it to an off board connecter, or test points.
• Processor containing 1K of EEPROM and 2K of code space.
• Four 10bit A to D converters built in.

Calibrating the Temperature Sensor
Normally to calibrate a temperature circuit, the product would sit in a thermal chamber,
and be exercised through some temperature cycles. Values would be read, and
adjustments made either physically (trim adjustments) or though loading calibration data
into the processor. All of this calibration time is counter productive to a high speed
assembly line. Because of the speed of the line, this approach is not a viable option.

Our goal then is to make the target product gather information from its sensors, store that
data, and at a later time use the data to calibrate the target product. The power of a
reprogrammable processor allows the product to be turned into a data collection unit
during manufacturing. Later in the production line, the data collected will be analyzed
externally, and the result will yield calibration values that will be used to make the product
more accurate.

In the case of the temperature sensor; the product could be powered up on the assembly
line, readings of the target product temperature sensor could be read at intervals and
stored in the processor memory, while the product is traveling through a calibrated oven.
The oven could contain temperature controlled zones, and as the product goes through
the oven, it can record several values in each zone. Once the product is out of the oven,
a station could read back the data out of the processor memory. When the data is
extracted, since the over temperatures are fixed, any deviation from what the target
product recorded is the error or the temperature sensor. Now compensation tables can
be generated and stored into the target processor, along with the products final
application code. The test-code that originally stored the calibration data in the oven can
be discarded to recover precious memory-space in the processor. This only pieces of
equipment required to perform this task would be an ISP programmer, a modified oven,
and a PC attached to the programmer that has the ability to read and write from the
processor memory.

Calibrating the Current Sensor
A similar approach could be used to calibrate the current sensor. But this time instead of
having the product exposed to an external stimulus such as the oven, this time we will
have the target product control an external stimulus. Since our circuit has an RS232
interface, test code could be written in the target product that would send data out its
RS232 port to control external devices. A test fixture could be created that connects the
target RS232 port to a PLC that has the ability to set fixed current loads to the target
product. When the test code runs, the target board would send out RS232 data that
instructs the test fixture to switch in a load. Since the load is precise and constant, the

This article by Dave Beecher has been accepted for publication in US Tech Magazine. This draft is for internal use only; please do not
distribute.

 3

target product can easily compare the actual value read with the known value, and make
adjustments accordingly. Perhaps in this case you do not want to reprogram the entire
application (such as with the temperature sensor), therefore; the processor could simply
fill its calibration data internally and move on as a finalized product. In this case the
application code and test code co-exist in the final product.

Using self-calibration in your next project
Simplify your calibration/test processes in manufacturing with the use of a self-
programming microcontroller. Most projects can be accomplished by following these 6
steps:

Load the target processor with test application code

• Power the target board, and start the processor running.
• Either the application itself controls external peripherals or instruments for

information or measurements; or the target itself records with its own peripherals
events of interest. These events can be stored for later interpretation.

• Exchange pertinent data with systems that calculate calibration values or perform
adjustments

• Load final target application into the processor
• Load any other unique data or calibration values to target
• Make any other adjustments to calibrate system

Manufacturers of self-programming microcontrollers, such as Atmel, Microchip
Technologies, Renesas, ST Micro, TI, Toshiba and others, offer design help and
application notes than can help you get started. The In-System programming can be
done by a variety of methods, including the ImageWriter production ISP programmer from
Data I/O.

About the Author:
David Beecher has 19 years experience in hardware and software design and
development, with a focus on embedded systems solutions for IC device programming.
His programming solutions for manufacturing and test in the avionics and consumer
products include parallel, serial, JTAG, ISP, ICP, and I2C technologies. Dave is currently
directing an applications engineering team at Data I/O Corporation.

