Advanced Technology m ’ J

"Tochnical Guide
Programming NAND devices

Kelly Hirsch, Director of Advanced Technology, Data I/O Corporation

Recent Design Trends

In the past, embedded system designs have used NAND devices for storing data during run time; therefore,
manufacturing was not required to pre-program these NAND devices. Any boot code or Operating System
(OS) code was typically stored in NOR flash.

In recent months, design engineers have been reducing the cost of their products by using NAND devices
in systems that were “traditionally” NOR based. As memory devices increase in size (due to the
application) the cost also increases. The price of NAND flash devices is currently about one-third to one-
fourth the cost of binary NOR, and business imperatives put severe pressure on cost reduction, especially in
the wireless industry. These events increasingly validate the effort for design teams to add the extra layer
of software (and sometimes hardware) required to design in NAND.

As a result, designers are increasingly developing designs that can boot from NAND (and then move the
OS into RAM); there is no NOR-type memory required in these new systems. This approach drives new
requirements in manufacturing to program the NAND devices with boot code.

In addition to the increased cost, larger memory requires more time to program. Regardless of the type of
memory used, programming large devices at In Circuit Test (ICT) or Functional Test (FT) will slow down
the production line. This potential bottleneck is driving manufacturing engineers to seek other solutions
such as pre-programming the devices with “off-line” or “in-line” programming equipment.

Data I/O’s unique solution to this production bottleneck rests on the high-speed FlashCORE architecture
for device programming. In the FlashCORE system, all memory devices (both NAND and NOR) are
programmed with parallel data paths and in gang mode, greatly increasing the efficiency and lowering total
cost of manufacturing products which use large amounts of NAND and NOR flash memory. This paper
will examine the differences between NAND and NOR in device architectures and how those differences
influence approaches to programming.

NAND versus NOR

With NOR memory, all memory locations are guaranteed to be good and to have the same level of
endurance. To improve yields and keep costs down, NAND devices contain randomly located bad blocks
in the array. A programming approach for NAND devices therefore must have a scheme to identify and
avoid the bad memory cells when programming the device.

Physically, NAND memory devices use a smaller transistor because they don’t have to “pull down” a
whole bit-line (with relatively high capacitance). A NAND bit-line is a series of transistors so each

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
10f10

Advanced Technology m ’ J

transistor only has to pass a small amount of current. Figure 1 shows how the transistors are connected for
NOR and NAND and the approximate size difference.

Since cost is a function of die size, NAND devices are lower cost for the same memory size. Also, for
NOR memory, a relatively large amount of extra memory cells are fabricated on the die; these are used to
“repair” defects in the memory array in order to produce a device that has “all good” memory locations.

But for NAND, a minimal amount of extra memory is set aside to repair defective regions on the die
because it is not necessary to repair the entire array. This further reduces the size (and therefore the cost) of

a NAND die relative to a NOR die.

NOR TYPE

« Large cell and fast random access
N B
%

Bit Line

—|

—| 7
X
—| .
Y &Y
— Z
S

« Contact is the limiting factor for scale-down.

"

ontact

NAND TYPE
- Small cell, but fast sequential access

Bit Line
Contact

o_|
7 —|
- —|

e

&

16 or 32
transistors

o—]|
—|

—]

Common Source

Figure 1: NAND and NOR cell comparison (from Samsung application note).

A block of NAND memory usually consists of 16, 32, or 64 pages. For most NAND devices there are 512
bytes in the “normal” page area and then an extra 16 bytes in the “spare area” for a total of 528 bytes per
page. If a memory location is bad, then the entire block is “marked” as a “bad block.” Typically, a NAND
device starts out with a few bad blocks that are marked by the factory. Usually this is done by writing non-
“FFh” data at byte 517 in the first two pages of the block. However, a new bad block can show up
whenever it has data written to it. Usually, the block has to be erased and reprogrammed several times
before the probability of creating a bad block is significant.

To handle these bad blocks in the embedded system, an extra “layer” of software is required. (This is
similar to the software required to manage hard disks that can have bad sectors.) Therefore, to program
these devices, all we need to do to handle the bad blocks is to treat them in exactly the same way as they
are handled by the user’s system. But, as simple as this may sound, there are many ways to do this and
there doesn’t seem to be any universally accepted standard method.

For example, one common method is to just skip over the bad blocks and place the data in the known good

blocks. (We call this the Skip Block Method.) Another common method (by Samsung) is to allocate some
of the blocks as a “Reserve Block Area.” In this area, one block is used for a “table” that keeps track of the

bad blocks and the rest are used for the data that would have been written to the bad blocks. (Both methods
are contained in our current base algorithm for NAND devices.)

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870

20f10

Advanced Technology m ’ J

In addition, some applications require Error Checking and Correction (ECC) to be calculated for each page
of data. The ECC data is used to detect when a memory location “goes bad” and (depending on the ECC
algorithm) fix the bad bit. Typically, three bytes of ECC are generated for each page and placed in the
“spare area” of the page.

Another important difference between NAND and NOR is the read/write characteristic as shown in
Figure 2. NOR is programmed and read by addressing each byte while NAND is programmed and read
back (sequentially) page by page.

The programming times are also different. NAND gets charge into the floating gates of the memory cells
through a process called Fowler-Nordhiem (FN) tunneling. FN tunneling involves applying an electric
field across a dielectric to induce charge to “tunnel through” the dielectric. This process takes about 200
psec for NAND. For NOR, they typically use the Channel Hot Electron (CHE) effect to get charge on the
floating gate. This is faster (about 10usec) but it takes more current.

Even though it takes longer for the charge to get into NAND cells, because NAND is programmed a page
(528 bytes) at a time, the total programming time is much faster with NAND than with NOR memory
which only programs 1 byte at a time. Figure 3 is a table that shows the difference between programming
processes for a typical NOR flash device and a NAND device using FlashPAK, Data I/0’s new gang
programmer. (Note that for the NOR erase time, the worst case specification was used; typical erase times
for this part are about 125 sec.)

NAND Flash Memory*

NOR Flash Memory

Read Unit

Page (512 + 16 bytes)

Byte/Word

Access Time (typ.)

7 ps (initial access)
50 ns (serial access)

90 ns (random access)

Write Unit Page (512 + 16 bytes) Byte/Word
8 ps/Byte
Write Time (typ.) 200 ps 16 ps/Word

(4 ms/528 bytes)

Erase Unit

Block (8K + 256 bytes)

Sector (8K/64K bytes)

Erase Time (typ.)

2ms

18

Figure 2: NAND vs. NOR read/write characteristics.

Device Blank Check Erase Program | Verify
Intel 128 Mbit StrataFlash 2 sec 250 sec max 122 sec 9 sec
(NOR)
Typ. 125 sec
Samsung 128 Mbit NAND 8 sec 2 sec 10 sec 13 sec

Figure 3: Table of programming times on FlashPAK

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870

30f10

Advanced Technology m ’ J

File Systems

Some embedded products use NAND devices to store “files” as well as the boot code or OS code
mentioned earlier. Therefore, additional software is required to manage the NAND memory used as a file
system. This may include a format function, wear leveling, and the ability to de-fragment the memory area.
Most of the NAND manufacturers have software that manages these higher level functions and are willing
to license the software to an end user.

For example, SanDisk has a software product called “Stingray” that is essentially a NAND management
system, and Samsung has a custom ASIC that manages ECC and hardware protection.

Another example is M-Systems DiskOnChip® devices. M-Systems manufactures memory devices that are
based on NAND but have a “thin controller” layer that makes integration much easier. M-Systems will
license their TrueFFS® file system software in order to access and manage their DiskOnChip® devices.
Data I/O has ported TrueFFS® to its FlashCORE programmers so that M-Systems’ customers can now use
Data I/0’s most advanced programming technology.

The characteristics of the file system being used are a key consideration in the approach to device
programming. To optimize programming accuracy and speed, Data 1/0’s FlashCORE system needs access
to the file system details to support pre-programming with files.

Bad Block Schemes

Data I/O’s popular TaskLink for Windows™ software is used to create “jobs” for devices programmed on
FlashCORE programmers. Typically, the user creates the job, associates it with the programming data file,
and stores the information on a PCMCIA card. This card is then inserted into the programmer to begin
programming. No computer is need to run the programmer; only to create the job.

Currently, we have two methods available in our basic NAND algorithm — the “skip-block” method and
Samsung’s “Reserve Block” method. The user can also use the device without any bad block scheme.
(Note that some NAND devices are available with all blocks guaranteed to be good.)

Figure 4 shows the dialog box that is produced by TaskLink when a NAND device is selected from the
device list.

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
40f10

Advanced Technology m ’ J

Edit Tazk EE

Task I F'n:u:essl Data I FiIeI.-"EII Sectors Special Funchions |

[ilse Special Functions from Data S ource

Bad block handling type ISkip bad blocks

Led Lol

Spare area IDigabled

RE& area: Start block [dec) [1004 |
RBA area: Mumber of blocks [dec) |2D |
UBA area: Start block [dec] |EI |
Required good block area; Start block [dec] D
Required good block area; Mumber of blocks [dec]

Values are zero based

oK I Cancel

Figure 4: Special Functions for NAND devices.

Skip Block Method

This method is very straightforward as mentioned above. The algorithm starts by reading the entire spare
area (only) of the entire memory. The addresses of the factory-marked bad blocks are then collected in the
programmer RAM. Next, the image is sequentially programmed (page by page) into the target device.
When the target address corresponds to a bad block address, these pages are stored in the next good block,
skipping the bad block. Because this bad block is skipped, the original factory programmed (non-FFh) data
in the spare area indicating the presence of the bad block is still there. Therefore, the user's system can also
build a table of bad block addresses by reading the spare area of all the blocks at boot time.

Note that the user can choose to use the spare area to store user data/code or leave it blank. If the spare
area is used, the user must modify the linear image so that “FFh” is written to byte 517 (in the spare area).
In this way, the system can still generate a bad block table after the device has been programmed by

Data I/O equipment. In other words, there won’t be any confusion between good blocks that contain data
in the spare area, and bad blocks that were marked with non-FFh data at the factory.

The choices for the drop-down list titled Bad Block handling type are “None”, “Skip bad blocks” (as shown
above) and “Samsung RBA style.” For the Spare area drop-down list, the choices are “Disabled,”
“Enabled,” and “ECC.”

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
50f10

Advanced Technology m ’ d

If “ECC” is selected for the “Skip bad block” method, the algorithm will calculate three bytes of ECC data
corresponding to the 512 bytes of data in each page. The ECC bytes are placed in the 14", 15" and 16"
byte location of the spare area (byte 526, 527, and 528 of each page) as shown below.

1th 2th 3th 4th Sth 6th 7th 13th 14th 15th 16th

[e}eNe] ECCO ECC1 ECC2

\W_)

1byte

Note that if “ECC” is selected from the “Spare area” drop down list, the rest of the spare area is left blank
(FFh); the spare area cannot be used for both ECC and data storage. For details on the method used to
calculated the ECC value, see the code example on Samsung’s web site at
http://www.samsungusa.com/download/semiconductors/flash/eccalgo.pdf.

Also shown in Figure 4 are the parameters for specifying a “known good” block area. This is typically
used by systems that have to boot from NAND. The boot code must reside in good blocks because most
systems can’t handle bad blocks at boot — the code hasn’t been loaded yet. The user can specify both the
starting block for the known good area and the size.

During device programming, if a bad block is encountered in this range of blocks, the device is rejected
(fails programming). The probability of failure increases when a larger number of blocks are used for a
“known good area.” We recommend that the minimum number of known good blocks be set aside for the
boot code.

Note that most NAND manufacturers guarantee that the first block is good. Therefore, if your boot code
can fit into a single block (and you specify a known good range of 1 block with a starting address of 0), you
will not have any failures due to bad “boot blocks” during programming.

The “known good” feature applies to both the Skip Block method and the RBA method discussed in the
next section.

Samsung RBA Method

The Samsung RBA method is based on the “Reserved Block Area” concept. In the user’s system the bad
blocks are replaced with good blocks by “re-directing” the system to a known good block.

The programming algorithm works by first determining which blocks will be used as the User Block Area
or UBA and which blocks will be used as the Reserved Block Area (RBA). The starting address and size
of the UBA are determined by the parameters entered in the Special Function dialog as shown in Figure 4.
Also, the starting block of the RBA is defined by the user as well.

Next, the algorithm reads the spare area of the device, and constructs a “map table” in the RBA. Only the
first and second (valid) blocks in the RBA are used for this table.

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
6 of 10

http://www.samsungusa.com/download/semiconductors/flash/eccalgo.pdf

Advanced Technology m ’ d

The map table contains information on how to substitute bad blocks in the UBA with good blocks in the
RBA. The data fields in the map table are shown below.

2bytes 2bytes 2bytes 2bytes
N N N N
N/~ N/ N/ N
Transition Field Count Field Invalid Block # Replaced Block # ‘ OO ’ Invalid Block # Replaced Block #

The Transition Field is always FDFEh. The Count Field is incremented by one for each page of the map
table. For the current algorithm, there are only two pages used so the field will contain 0001h for the page
in the first block and 0002h for the page in the second block of the map table.

The data pair Invalid Block / Replaced Block show the address of the bad block and the address of the
replacement block respectively. The rest of the page consists of these data pairs. Since there are 512 bytes,
the maximum number of data pair entries is 127. Usually this will be sufficient since the number of bad
blocks is typically less that 1% of the total number of blocks for new devices being programmed. Of
course, new bad blocks can be generated during usage so the system (using this method) will have to
identify these blocks and update the map table.

The second page of the map table is used to duplicate the information in the first page in case one of these
pages becomes corrupt during usage. All fields use “little endian” protocol; the low byte is first.

For details of how to implement this method in your embedded systems design, please consult with
Samsung Field Application Engineers in your area.

Programming NAND on FlashCORE Programmers

When you use TaskLink for Windows to build a programming job, you can select the operations shown in
the Edit Task dialog box (Figure 5).

For the case shown in Figure 5, Erase Device is not checked because this job is for a new device which
does not need to be erased. However, it’s always a good idea to do a Blank Check to make sure the device
was not previously programmed.

Note that with Data I/O equipment, if a NAND device is erased, the factory programmed bad block
information is left intact. However, if you have selected “None” for the “Bad Block handling type” and
“Enabled” from the “Spare area” drop-down list (see Figure 4), then the entire device, including the spare
area, will be erased. This should be done only for NAND devices that are guaranteed to have no bad
blocks by the manufacturer.

Verification of the image in the device is accomplished by reading the entire device and performing a
binary compare with the original data (in programmer RAM). If there is not an exact match, the
programmer will report a verification error for that device.

As mentioned above, it is possible to generate a new bad block whenever NAND devices are being
programmed. This is the main reason “wear leveling” is used in NAND management systems. A wear
leveling routine will make sure the same block is not erased and reprogrammed repeatedly. This is

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
7 of 10

Advanced Technology m ’ J

accomplished by changing the physical to logical “map” continuously so that, over the course of time, all
blocks are utilized the same amount.

Since the probability of generating a bad block is proportional to the number of times each page in the
block is programmed, it is very rare to induce a new bad block when these devices are being programmed
for the first time. Therefore, Data I/O equipment does not allow newly generated bad blocks during
programming. If verification fails (due to a new bad block showing up or any other reason) the device is
not passed. For our automated equipment, the device is automatically placed in a reject bin or tray. A
failure of this type is indicated as a “verify failure” in the log file and a red LED is turned on next to the

device that failed.

Edit Task 71|

Task Process | [rata I FiIeI.-"EII Seu:tu:ursl Special Funu:tiu:unsl

— Proceszing Options

W Continuity Check
W Electronic |D Check
[Erase Device

¥ Blank Check

W Werify Device

] I Cancel

Figure 5: Edit Task dialog box from TaskLink for Windows.

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
8 of 10

Advanced Technology m ’ d

Designer’s Checklist

Most NAND devices can easily be supported on Data I/0’s FlashCORE programmers. The following set
of questions is intended to provide guidance and assure compatibility with our existing NAND algorithm.

1) Do I need bad block management?

a) Yes, if you are using any NAND device that can potentially have bad blocks.
(The exception to this is M-Systems DiskOnChip® devices where the bad block
management is handled by the controller that is integrated onto the NAND
memory array.)

2) Will my system be able to identify the bad blocks after programming?

a) Data I/O programmers do not erase the “bad block™ indicator that is placed
in the spare area. Therefore, the system can always check specific bytes (of the
first page) in each block. If the value is non-FFh (for x8 devices) or non-FFFFh
for x16 devices then the factory has marked the block “bad.” (Be sure to consult
the manufacturer to verify the location they use to mark bad blocks.)

b) For the RBA method, a map table is created by the programmer that contains
all the bad block information. You can specify the starting address of this map
table when you program the device.

3) Do Ineed ECC?

a) For boot code applications this is usually not necessary because the data is
only programmed once. (Remember, bad blocks only show up during
programming.)

b) For data/parameter storage where a block is erased and reprogrammed (or
over programmed) during the application, you will most likely need limited
ECC. Data I/0 FlashCORE programmers can generate three-bytes of ECC per
512 bytes of data. This ECC method allows for detecting 1-bit and 2-bit errors.
The ECC bytes are placed at the end of the spare area for each page.

¢) For applications where the NAND device is being used as a file system, the
file system software usually handles ECC. The only file system supported on
FlashCORE products at this time is M-Systems’ TrueFFS. ®

4) I have a special proprietary ECC algorithm for my application. Instead of having
Data I/O duplicate this algorithm in my equipment, can I just modify my binary file
with the ECC data instead?

a) Yes. If you choose to run your raw image through some kind of utility that
places the ECC data in a certain location, then Data I/0O FlashCORE
programmers can just program the device without ECC selected. In this case we
recommend that you place the ECC bytes in the spare area (and enable usage of
the spare area when you create the job).

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
9 of 10

Advanced Technology m

5) Do I need to port my file system to Data I/O’s programmer?

a) Ifyou use a file system (like Microsoft’s BinFS) but do not need any files
placed into the NAND device during manufacturing, then you do not need to
port the file system to Data I/O’s programmer. This is true if, for example, you
have your operating system in NAND (programmed at manufacturing) but you
only create files after the OS is transferred to SRAM and you launch your
application.

b) Ifyou use a file system and you expect some files to be available at boot,
then those files need to be programmed with the same file system you are
reading them with. So in this case, contact Data 1/0 about the possibility of
porting the pertinent portion of your file system to Data I/0O’s programming
platform in order to support your product.

6) Iam using a Multi Chip Package (MCP) with NOR flash, NAND flash, and SRAM
in a single package. Can I use Data I/O equipment to program both the NOR and
the NAND at the same time?

a) Yes. Our FlashCORE programmer has the capability to program multiple
devices in one package. Since each MCP device may have different pin-outs,
the first and most important thing to do is work with the manufacturer to make
sure an “open top” test socket is available.

Conclusion

Data I/0 FlashCORE™ programming systems are flexible and powerful, allowing
designers and manufacturers to unleash the full potential offered by NAND flash
technology. Visit http://www.datio.com/nand/nandflash.asp to view a list of supported
NAND devices. If your NAND design and implementation challenges include a need
for a customized approach to bad block handling, or a solution for volume programming
to commercialize your application, we invite you to contact us.

Data I/0O Corporation « 10525 Willows Road NE « Redmond WA 98052
www.dataio.com Fax (425) 882-1043 « USA Tel (800) 332-8246 + Tel +1-425-867-6870
10 of 10

http://www.datio.com/nand/nandflash.asp

	Recent Design Trends
	NAND versus NOR
	Bad Block Schemes
	Programming NAND on FlashCORE Programmers
	Designer’s Checklist
	Conclusion

